
International Systems and Domestic Politics: Linking Complex
Interactions with Empirical Models in International Relations

(Empirical Appendix)

Stephen Chaudoin University of Pittsburgh
chaudoin@pitt.edu

Helen V. Milner Princeton University
hmilner@princeton.edu

Xun Pang Tsinghua University
xpang@tsinghua.edu.cn

1



This appendix describes the supplementary empirical analysis for “International Systems and Do-

mestic Politics: Linking Complex Interactions with Empirical Models in International Relations.” It

contains the algorithm for estimating the model with time varying ⇢, the algorithm for estimating a mul-

tilevel model with a time-varying ⇢, a description of the nonconvergence diagnostics run on each model,

and a description of the stationarity checks ran on the model with time-invariant ⇢.

1 Estimation Algorithm for Time-Varying ⇢ and W

This section describes the MCMC algorithm for estimating a spatial model with time varying ⇢ and

W, as in Section 2.5 of the paper. The model combining multilevel and spatial analyses is estimated

using an algorithm combining the following algorithm and the algorithm proposed in [author information

removed].

• A Spatial Model with time-varying ⇢ and W

yit = ⇢twityt + xit� + ✏it

Matrix notation

yt = ⇢tWtyt +Xt� + ✏t, t = 1, 2, ..., T

where yt = {y1t, y2t, ..., ynt}, and ⇢t and Wt is a N ⇥N weight matrix with each row summed up

to 1 and all diagonal elements equal to 0. Assume that E(✏t✏0t) = �2
eIn, 8t. This is a simultaneous

model and all y’s are determined at the same time. Rearrange the model to get

A(⇢t)yt = Xt� + ✏t, t = 1, 2, ..., T

where A(⇢t) = (I� ⇢tWt).
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• Likelihood

f(Y|�,W,⇢, �2
e) /

TY

t=1

|A(⇢t)|�Nt
e exp


� 1

2�2
e

{A(⇢t)yt �Xt�}0{A(⇢t)yt �Xt�}
�

• Priors

� ⇠ Nk(�0,B0), ⇢t ⇠ U(�1, 1), ��2
e ⇠ G(a0, b0)

• Posterior

(a) �

�|⇢, ��2
e ⇠ N (

¯�,B1),

where, B1 =

 
B0 + ��2

e

TX

t=1

X

0
tXt

!�1

¯� = B1

 
B

�1
0 �0 + ��2

e

TX

t=1

X

0
tA(⇢t)yt

!

(b) ��2
e

��2
e |�,⇢ ⇠ G(↵1, �1),

where, ↵1 = a0 +
TX

t=1

Nt

�1 = b0 +
TX

t=1

(A(⇢t)yt �Xt�)
0
(A(⇢t)yt �Xt�)

(c) {⇢t} Metropolis-Hastings algorithm. The proposal density is

⇢⇤t ⇠ N (�,�)
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where, � =

 
��2
e

NtX

i=1

(wityt)
0
(wityt)

!�1

� = ���2
NtX

i=1

(wityt)
0
(yit � xit�)

↵ =

|A(⇢⇤t )| exp
h
� 1

2�2
e
{A(⇢⇤t )yt �Xt�}0{A(⇢⇤t )yt �Xt�}

i

|A(⇢t)| exp
h
� 1

2�2
e
{A(⇢t)yt �Xt�}0{A(⇢t)yt �Xt�}

i

The determinant |A(⇢t)| =
Qm

i=1(1�⇢t�i) where �i is the ith eigenvalue of the m eigenvalues

of Wt. Then

log(↵) =
mX

i=1

log(1� ⇢⇤1�i)�
mX

i=1

log(1� ⇢1�i)�
1

2�2
e

({A(⇢⇤t )yt �Xt�}0

{A(⇢⇤t )yt �Xt�}� {A(⇢t)yt �Xt�}0{A(⇢t)yt �Xt�})

if log(↵) > 0 accept ⇢⇤t ; otherwise, reject the proposal and keep ⇢t as the updated value.

2 Multilevel Spatial Modeling

This section describes the MCMC algorithm for estimating a multilivel spatial model with time varying

⇢ and W, as in Section 2.6 of the paper.

• Model specification as in section 2.6 of the paper.

Yit = �0 + �0t + bi + ⇢tWitYt + �DtDit + ✏it (1)

�0t = �SSt + ct (2)

�Dt = �0 + �SSt + ⇣t, (3)

The reduced form of the model (plug the last two equations into the first one, and reaggrange the
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function)

Yit = �0 + ⇢tWitYt + �0Dit + �SSt + �SStDit + ⇣tDit + bi + ct + ✏it (4)

The composite error is "it = ⇣tDit + �0i + ct + ✏it, which is apparently correlated with two terms

of the observed for sure. To solve this serious endogeneity problem, the Bayesian approach takes

all the three terms ⇣tDit, �0i, ct out of the error term and treats ⇣t, �0i and ct as model parameters

to be estimated based on data, though those parameters may not be interesting.

If the first column of the matrix of Dt are all 1, then the matrix expression of the reduced model is

as following:

Yt =⇢tWtYt +Dt�0 + St�s + StDt�s +Dtct + bi + ✏t, (5)

=⇢tWtYt +Xt� +Dtct + bi + ✏t (6)

where Yt = {Y1t, Y2t, ..., Ynt}, bi = {b1, b2, ..., bn}, c = {⇣t, ct}, � = {�0,�s,�s}, Xt =

{Dt, St, StDt}and Wt is a N ⇥N weight matrix with each row summed up to 1 and all diagonal

elements equal to 0. Assume that E(✏t✏0t) = �2
In, 8t. This is a simultaneous model and all y’s are

determined at the same time. Rearrange the model to get

A(⇢t)Yt = Xt� +Dtct + bi + ✏t, (7)

where A(⇢t) = (I� ⇢tWt).

• Priors: priors are required for a Bayesian model. The parameters are assigned with priors which

assume the following distributive forms:

� ⇠ NK1(�0,B0), {bi} ⇠ NK2(0,D), D

�1 ⇠ W(⌫0,D0),

{ct} ⇠ N (0,E), E

�1 ⇠ W(⌘0,E0), ⇢t ⇠ U(⇢ : ⇢ 2 S⇢),

✏t ⇠ N (0, �2
), ��2 ⇠ G(a0, b0),
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where Nk denotes a k-dimensional multivariate normal distribution, W denotes a Wishart distri-

bution, U denotes a uniform distribution, and G denotes a Gamma distribution.

• The posterior is as follows:

⇡(⇥|Y) /f(Y|⇥)⇡(⇥) (8)

⇡(�, {⇢t},{bi}, {ct},D,E, �2|Y) /
TY

t=1

|A(⇢t)|�Nt

⇥ exp


� 1

2�2
{A(⇢t)yt �Xt� �Dtct � bi}0{A(⇢t)yt �Xt� �Dtct � bi}

�

⇥ ⇡(�)⇡({⇢t})⇡({bi})⇡({ct)⇡(D)⇡(E)⇡(�2
) (9)

2.1 MCMC Algorithm

Besides the spatial autoregressive coefficient, all model parameters can be directly sampled from their

full conditional posteriors using the Gibbs Sampler. For {⇢t}, a Metropolis-Hastings algorithm with a

normal proposal distribution is applied to update the parameters. The iterative simulation scheme is as

follows:

(a) Sample � from the multivariate distribution below conditional on the most updated values of other

parameters and the data:

� ⇠ N (

¯�,B1), (10)

where, B1 =

 
B0 + ��2

TX

t=1

X

0
tXt

!�1

(11)

¯� = B1

 
B

�1
0 �0 + ��2

TX

t=1

X

0
tA(⇢t)(Yt �Dtct � bi)

!
(12)

(b) Sample ��2 from the gamma distribution below conditional on the most updated values of other

parameters and the data

��2 ⇠ G(↵1, �1), (13)
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where, ↵1 = a0 +
TX

t=1

Nt (14)

�1 = b0 +
TX

t=1

(A(⇢t)yt �Xt� �Dtct � bi)
0
(A(⇢t)yt �Xt� �Dtct � bi) (15)

(c) Update bi one by one based on the following conditional posterior distribution:

bi ⇠ N (

¯

bi,D1i), (16)

where

D1i =(DDD�1
+ ��2

I)

�1 (17)

¯

bi =D1i�
�2
(

TX

t=1

(Yit � ⇢tWitYt �Xit� �Ditct) (18)

(d) Draw ct one by one from their respective conditional posterior distribution conditional on the most

updated values of other parameters and the data:

ct ⇠ N (

¯

ct,E1i), (19)

where

E1i =(E

�1
++��2

D

0
tDt)

�1 (20)

¯

ct =E1i�
�2
D

0
t(A(⇢t)yt �Xt� � bi) (21)

(e) Update the variance-covariance matrices of D in the following way:

D

�1 ⇠ W(⌫1,DDD1), (22)

where ⌫1 = ⌫0 +N , and DDD1 = (D

�1
0 +

PN
i=1 �i�

0
i)
�1,
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(f) Similarly, E is updated using its conditional posterior:

E

�1|{ct} ⇠ W(⌘1,E1), (23)

where, ⌘1 = ⌘0 + T , and E1 = (E

�1
0 +

PT
i=1 ctc

0
t)

�1

(g) {⇢t} MH algorithm. The proposal density is

⇢⇤t ⇠ N (�,�) (24)

where, � =

 
��2

NX

i=1

(WitYt)
0
(WitYt)

!�1

(25)

� = ���2
NtX

i=1

(WitYt)
0
(Yit �Xt� �Dtct � bi) (26)

↵ =

|A(⇢⇤t )| exp
⇥
� 1

2�2{A(⇢⇤t )Yt �Xt� �Dtct � bi}0{A(⇢⇤t )Yt �Xt� �Dtct � bi}
⇤

|A(⇢t)| exp
⇥
� 1

2�2{A(⇢t)Yt �Xt� �Dtct � bi}0{A(⇢t)Yt �Xt� �Dtct � bi}
⇤ (27)

The determinant |A(⇢t)| =
Qm

i=1(1� ⇢t�i) where �i is an eigenvalue of Wt. Then if ↵ > 1 accept

⇢⇤t ; otherwise, reject the proposal and keep ⇢t as the updated value

(h) Repeat the process from (a) to (g) till convergence.

3 Stationarity Check

To assess stationarity concerns with the time-invariant ⇢ model, we re-estimated time-invariant ⇢ model

without placing any restrictions on the parameter space of ⇢. We started the chain for ⇢ at zero. Figure 1

shows the trace plots of draws of ⇢ in two such MCMC simulations without a burn-in stage.

The plot on the left-side is based on a spatial model using mutual GATT/WTO membership to con-

struct the matrix of spatial weights. After approximately one hundred iterations, the chain went out of

the stationarity space, and stayed in the area above 1 for most of the time. There is no sign that the chain

would return in the stationarity space by increasing the number of iterations.
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Figure 1: System-Specific/Time-Specific Effect of Regime
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To further check this problem, we re-estimated the same model, but used a time-invariant matrix of

spatial weights, where the weight for two countries consists of their geographical distance. The trace plot

on the right-side hand shows that it is very unlikely that the process is stationary, either. While the chain

for ⇢ moves above 1 slightly less quickly (though still pretty quickly), the chain is very rarely below 1.
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