International Systems and Domestic Politics: Linking Complex Interactions with Empirical Models in International Relations (Empirical Appendix)

Stephen Chaudoin University of Pittsburgh

chaudoin@pitt.edu

Helen V. Milner Princeton University
hmilner@princeton.edu

Xun Pang Tsinghua University
xpang@tsinghua.edu.cn

This appendix describes the supplementary empirical analysis for "International Systems and Domestic Politics: Linking Complex Interactions with Empirical Models in International Relations." It contains the algorithm for estimating the model with time varying ρ, the algorithm for estimating a multilevel model with a time-varying ρ, a description of the nonconvergence diagnostics run on each model, and a description of the stationarity checks ran on the model with time-invariant ρ.

1 Estimation Algorithm for Time-Varying ρ and W

This section describes the MCMC algorithm for estimating a spatial model with time varying ρ and \mathbf{W}, as in Section 2.5 of the paper. The model combining multilevel and spatial analyses is estimated using an algorithm combining the following algorithm and the algorithm proposed in [author information removed].

- A Spatial Model with time-varying ρ and \mathbf{W}

$$
y_{i t}=\rho_{t} \mathbf{w}_{i t} \mathbf{y}_{t}+\mathbf{x}_{i t} \boldsymbol{\beta}+\epsilon_{i t}
$$

Matrix notation

$$
\mathbf{y}_{t}=\rho_{t} \mathbf{W}_{t} \mathbf{y}_{t}+\mathbf{X}_{t} \boldsymbol{\beta}+\boldsymbol{\epsilon}_{t}, \quad t=1,2, \ldots, T
$$

where $\mathbf{y}_{t}=\left\{y_{1 t}, y_{2 t}, \ldots, y_{n t}\right\}$, and $\boldsymbol{\rho}_{t}$ and \mathbf{W}_{t} is a $N \times N$ weight matrix with each row summed up to 1 and all diagonal elements equal to 0 . Assume that $\mathrm{E}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)=\sigma_{e}^{2} \mathbf{I}_{n}, \forall t$. This is a simultaneous model and all y 's are determined at the same time. Rearrange the model to get

$$
\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}=\mathbf{X}_{t} \boldsymbol{\beta}+\boldsymbol{\epsilon}_{t}, \quad t=1,2, \ldots, T
$$

where $\mathbf{A}\left(\rho_{t}\right)=\left(\mathbf{I}-\rho_{t} \mathbf{W}_{t}\right)$.

- Likelihood

$$
f\left(\mathbf{Y} \mid \boldsymbol{\beta}, \mathbf{W}, \boldsymbol{\rho}, \sigma_{e}^{2}\right) \propto \prod_{t=1}^{T}\left|\mathbf{A}\left(\rho_{t}\right)\right| \sigma_{e}^{N_{t}} \exp \left[-\frac{1}{2 \sigma_{e}^{2}}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}\right]
$$

- Priors

$$
\boldsymbol{\beta} \sim \mathcal{N}_{k}\left(\boldsymbol{\beta}_{0}, \mathbf{B}_{0}\right), \quad \rho_{t} \sim \mathcal{U}(-1,1), \quad \sigma_{e}^{-2} \sim \mathcal{G}\left(a_{0}, b_{0}\right)
$$

- Posterior
(a) $\boldsymbol{\beta}$

$$
\boldsymbol{\beta} \mid \boldsymbol{\rho}, \sigma_{e}^{-2} \sim \mathcal{N}\left(\overline{\boldsymbol{\beta}}, \mathbf{B}_{1}\right)
$$

$$
\text { where, } \quad \begin{aligned}
\mathbf{B}_{1} & =\left(\mathbf{B}_{0}+\sigma_{e}^{-2} \sum_{t=1}^{T} \mathbf{X}_{t}^{\prime} \mathbf{X}_{t}\right)^{-1} \\
\overline{\boldsymbol{\beta}} & =\mathbf{B}_{1}\left(\mathbf{B}_{0}^{-1} \boldsymbol{\beta}_{0}+\sigma_{e}^{-2} \sum_{t=1}^{T} \mathbf{X}_{t}^{\prime} \mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}\right)
\end{aligned}
$$

(b) σ_{e}^{-2}

$$
\begin{gathered}
\sigma_{e}^{-2} \mid \boldsymbol{\beta}, \boldsymbol{\rho} \sim \mathcal{G}\left(\alpha_{1}, \delta_{1}\right) \\
\text { where, } \alpha_{1}=a_{0}+\sum_{t=1}^{T} N_{t} \\
\delta_{1}=b_{0}+\sum_{t=1}^{T}\left(\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right)^{\prime}\left(\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right)
\end{gathered}
$$

(c) $\left\{\rho_{t}\right\}$ Metropolis-Hastings algorithm. The proposal density is

$$
\rho_{t}^{*} \sim \mathcal{N}(\phi, \Phi)
$$

$$
\begin{gathered}
\text { where, } \Phi=\left(\sigma_{e}^{-2} \sum_{i=1}^{N_{t}}\left(\mathbf{w}_{i t} \mathbf{y}_{t}\right)^{\prime}\left(\mathbf{w}_{i t} \mathbf{y}_{t}\right)\right)^{-1} \\
\phi=\Phi \sigma^{-2} \sum_{i=1}^{N_{t}}\left(\mathbf{w}_{i t} \mathbf{y}_{t}\right)^{\prime}\left(y_{i t}-\mathbf{x}_{i t} \boldsymbol{\beta}\right) \\
\alpha=\frac{\left|\mathbf{A}\left(\rho_{t}^{*}\right)\right| \exp \left[-\frac{1}{2 \sigma_{e}^{2}}\left\{\mathbf{A}\left(\rho_{t}^{*}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}^{*}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}\right]}{\left|\mathbf{A}\left(\rho_{t}\right)\right| \exp \left[-\frac{1}{2 \sigma_{e}^{2}}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}\right]}
\end{gathered}
$$

The determinant $\left|\mathbf{A}\left(\rho_{t}\right)\right|=\prod_{i=1}^{m}\left(1-\rho_{t} \lambda_{i}\right)$ where λ_{i} is the i th eigenvalue of the m eigenvalues of \mathbf{W}_{t}. Then

$$
\begin{aligned}
\log (\alpha)= & \sum_{i=1}^{m} \log \left(1-\rho_{1}^{*} \lambda_{i}\right)-\sum_{i=1}^{m} \log \left(1-\rho_{1} \lambda_{i}\right)-\frac{1}{2 \sigma_{e}^{2}}\left(\left\{\mathbf{A}\left(\rho_{t}^{*}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}^{\prime}\right. \\
& \left.\left\{\mathbf{A}\left(\rho_{t}^{*}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}-\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}\right\}\right)
\end{aligned}
$$

if $\log (\alpha)>0$ accept ρ_{t}^{*}; otherwise, reject the proposal and keep ρ_{t} as the updated value.

2 Multilevel Spatial Modeling

This section describes the MCMC algorithm for estimating a multilivel spatial model with time varying ρ and \mathbf{W}, as in Section 2.6 of the paper.

- Model specification as in section 2.6 of the paper.

$$
\begin{align*}
& Y_{i t}=\beta_{0}+\beta_{0 t}+b_{i}+\rho_{t} W_{i t} \mathbf{Y}_{t}+\beta_{D t} D_{i t}+\epsilon_{i t} \tag{1}\\
& \beta_{0 t}=\beta_{S} S_{t}+c_{t} \tag{2}\\
& \beta_{D t}=\gamma_{0}+\gamma_{S} S_{t}+\zeta_{t} \tag{3}
\end{align*}
$$

The reduced form of the model (plug the last two equations into the first one, and reaggrange the
function)

$$
\begin{equation*}
Y_{i t}=\beta_{0}+\rho_{t} W_{i t} \mathbf{Y}_{t}+\gamma_{0} D_{i t}+\beta_{S} S_{t}+\gamma_{S} S_{t} D_{i t}+\zeta_{t} D_{i t}+b_{i}+c_{t}+\epsilon_{i t} \tag{4}
\end{equation*}
$$

The composite error is $\varepsilon_{i t}=\zeta_{t} D_{i t}+\beta_{0 i}+c_{t}+\epsilon_{i t}$, which is apparently correlated with two terms of the observed for sure. To solve this serious endogeneity problem, the Bayesian approach takes all the three terms $\zeta_{t} D_{i t}, \beta_{0 i}, c_{t}$ out of the error term and treats $\zeta_{t}, \beta_{0 i}$ and c_{t} as model parameters to be estimated based on data, though those parameters may not be interesting.

If the first column of the matrix of \mathbf{D}_{t} are all 1 , then the matrix expression of the reduced model is as following:

$$
\begin{align*}
\mathbf{Y}_{t} & =\rho_{t} \mathbf{W}_{t} \mathbf{Y}_{t}+\mathbf{D}_{t} \gamma_{0}+S_{t} \boldsymbol{\beta}_{s}+S_{t} \mathbf{D}_{t} \gamma_{s}+\mathbf{D}_{t} \mathbf{c}_{t}+\mathbf{b}_{i}+\boldsymbol{\epsilon}_{t} \tag{5}\\
& =\rho_{t} \mathbf{W}_{t} \mathbf{Y}_{t}+\mathbf{X}_{t} \boldsymbol{\beta}+\mathbf{D}_{t} \mathbf{c}_{t}+\mathbf{b}_{i}+\boldsymbol{\epsilon}_{t} \tag{6}
\end{align*}
$$

where $\mathbf{Y}_{t}=\left\{Y_{1 t}, Y_{2 t}, \ldots, Y_{n t}\right\}, \mathbf{b}_{i}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, \mathbf{c}=\left\{\zeta_{t}, c_{t}\right\}, \boldsymbol{\beta}=\left\{\boldsymbol{\gamma}_{0}, \boldsymbol{\beta}_{s}, \boldsymbol{\gamma}_{s}\right\}, \mathbf{X}_{t}=$ $\left\{\mathbf{D}_{t}, S_{t}, S_{t} \mathbf{D}_{t}\right\}$ and \mathbf{W}_{t} is a $N \times N$ weight matrix with each row summed up to 1 and all diagonal elements equal to 0 . Assume that $\mathrm{E}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)=\sigma^{2} \mathbf{I}_{n}, \forall t$. This is a simultaneous model and all y 's are determined at the same time. Rearrange the model to get

$$
\begin{equation*}
\mathbf{A}\left(\rho_{t}\right) \mathbf{Y}_{t}=\mathbf{X}_{t} \boldsymbol{\beta}+\mathbf{D}_{t} \mathbf{c}_{t}+\mathbf{b}_{i}+\boldsymbol{\epsilon}_{t} \tag{7}
\end{equation*}
$$

where $\mathbf{A}\left(\rho_{t}\right)=\left(\mathbf{I}-\rho_{t} \mathbf{W}_{t}\right)$.

- Priors: priors are required for a Bayesian model. The parameters are assigned with priors which assume the following distributive forms:

$$
\begin{aligned}
& \boldsymbol{\beta} \sim \mathcal{N}_{K_{1}}\left(\boldsymbol{\beta}_{0}, \mathbf{B}_{0}\right), \quad\left\{\mathbf{b}_{i}\right\} \sim \mathcal{N}_{K_{2}}(\mathbf{0}, \mathbf{D}), \quad \mathbf{D}^{-1} \sim \mathcal{W}\left(\nu_{0}, \mathbf{D}_{0}\right), \\
& \left\{\mathbf{c}_{t}\right\} \sim \mathcal{N}(\mathbf{0}, \mathbf{E}), \quad \mathbf{E}^{-1} \sim \mathcal{W}\left(\boldsymbol{\eta}_{0}, \mathbf{E}_{0}\right), \quad \rho_{t} \sim \mathcal{U}\left(\rho: \rho \in S_{\rho}\right), \\
& \epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{-2} \sim \mathcal{G}\left(a_{0}, b_{0}\right),
\end{aligned}
$$

where \mathcal{N}_{k} denotes a k-dimensional multivariate normal distribution, \mathcal{W} denotes a Wishart distribution, \mathcal{U} denotes a uniform distribution, and \mathcal{G} denotes a Gamma distribution.

- The posterior is as follows:

$$
\begin{align*}
\pi(\boldsymbol{\Theta} \mid \mathbf{Y}) \propto & \propto(\mathbf{Y} \mid \boldsymbol{\Theta}) \pi(\boldsymbol{\Theta}) \tag{8}\\
\pi\left(\boldsymbol{\beta},\left\{\rho_{t}\right\},\right. & \left.\left\{\mathbf{b}_{i}\right\},\left\{\mathbf{c}_{t}\right\}, \mathbf{D}, \mathbf{E}, \sigma^{2} \mid \mathbf{Y}\right) \propto \prod_{t=1}^{T}\left|\mathbf{A}\left(\rho_{t}\right)\right| \sigma^{N_{t}} \\
& \times \exp \left[-\frac{1}{2 \sigma^{2}}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right\}\right] \\
& \times \pi(\boldsymbol{\beta}) \pi\left(\left\{\rho_{t}\right\}\right) \pi\left(\left\{\mathbf{b}_{i}\right\}\right) \pi\left(\left\{\mathbf{c}_{t}\right) \pi(\mathbf{D}) \pi(\mathbf{E}) \pi\left(\sigma^{2}\right)\right. \tag{9}
\end{align*}
$$

2.1 MCMC Algorithm

Besides the spatial autoregressive coefficient, all model parameters can be directly sampled from their full conditional posteriors using the Gibbs Sampler. For $\left\{\rho_{t}\right\}$, a Metropolis-Hastings algorithm with a normal proposal distribution is applied to update the parameters. The iterative simulation scheme is as follows:
(a) Sample $\boldsymbol{\beta}$ from the multivariate distribution below conditional on the most updated values of other parameters and the data:

$$
\begin{gather*}
\boldsymbol{\beta} \sim \mathcal{N}\left(\overline{\boldsymbol{\beta}}, \mathbf{B}_{1}\right) \tag{10}\\
\text { where, } \quad \mathbf{B}_{1}=\left(\mathbf{B}_{0}+\sigma^{-2} \sum_{t=1}^{T} \mathbf{X}_{t}^{\prime} \mathbf{X}_{t}\right)^{-1} \tag{11}\\
\overline{\boldsymbol{\beta}}=\mathbf{B}_{1}\left(\mathbf{B}_{0}^{-1} \boldsymbol{\beta}_{0}+\sigma^{-2} \sum_{t=1}^{T} \mathbf{X}_{t}^{\prime} \mathbf{A}\left(\rho_{t}\right)\left(\mathbf{Y}_{t}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right)\right) \tag{12}
\end{gather*}
$$

(b) Sample σ^{-2} from the gamma distribution below conditional on the most updated values of other parameters and the data

$$
\begin{equation*}
\sigma^{-2} \sim \mathcal{G}\left(\alpha_{1}, \delta_{1}\right) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
\text { where, } & \alpha_{1}=a_{0}+\sum_{t=1}^{T} N_{t} \tag{14}\\
\delta_{1} & =b_{0}+\sum_{t=1}^{T}\left(\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right)^{\prime}\left(\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right) \tag{15}
\end{align*}
$$

(c) Update \mathbf{b}_{i} one by one based on the following conditional posterior distribution:

$$
\begin{equation*}
\mathbf{b}_{i} \sim \mathcal{N}\left(\overline{\mathbf{b}}_{i}, \mathbf{D}_{1 i}\right), \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{D}_{1 i} & =\left(\boldsymbol{D}^{-1}+\sigma^{-2} \mathbf{I}\right)^{-1} \tag{17}\\
\overline{\mathbf{b}}_{i} & =\mathbf{D}_{1 i} \sigma^{-2}\left(\sum_{t=1}^{T}\left(Y_{i t}-\rho_{t} W_{i t} \mathbf{Y}_{t}-X_{i t} \boldsymbol{\beta}-D_{i t} \mathbf{c}_{t}\right)\right. \tag{18}
\end{align*}
$$

(d) Draw \mathbf{c}_{t} one by one from their respective conditional posterior distribution conditional on the most updated values of other parameters and the data:

$$
\begin{equation*}
\mathbf{c}_{t} \sim \mathcal{N}\left(\overline{\mathbf{c}}_{t}, \mathbf{E}_{1 i}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{E}_{1 i} & =\left(\mathbf{E}^{-1}++\sigma^{-2} \mathbf{D}_{t}^{\prime} \mathbf{D}_{t}\right)^{-1} \tag{20}\\
\overline{\mathbf{c}}_{t} & =\mathbf{E}_{1 i} \sigma^{-2} \mathbf{D}_{t}^{\prime}\left(\mathbf{A}\left(\rho_{t}\right) \mathbf{y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{b}_{i}\right) \tag{21}
\end{align*}
$$

(e) Update the variance-covariance matrices of \mathbf{D} in the following way:

$$
\begin{equation*}
\mathbf{D}^{-1} \sim \mathcal{W}\left(\nu_{1}, \boldsymbol{D}_{1}\right) \tag{22}
\end{equation*}
$$

where $\nu_{1}=\nu_{0}+N$, and $\boldsymbol{D}_{1}=\left(\mathbf{D}_{0}^{-1}+\sum_{i=1}^{N} \boldsymbol{\beta}_{i} \boldsymbol{\beta}_{i}^{\prime}\right)^{-1}$,
(f) Similarly, \mathbf{E} is updated using its conditional posterior:

$$
\begin{equation*}
\mathbf{E}^{-1} \mid\left\{\mathbf{c}_{t}\right\} \sim \mathcal{W}\left(\boldsymbol{\eta}_{1}, \mathbf{E}_{1}\right) \tag{23}
\end{equation*}
$$

where, $\boldsymbol{\eta}_{1}=\boldsymbol{\eta}_{0}+T$, and $\mathbf{E}_{1}=\left(\mathbf{E}_{0}^{-1}+\sum_{i=1}^{T} \mathbf{c}_{t} \mathbf{c}_{t}^{\prime}\right)^{-1}$
(g) $\left\{\rho_{t}\right\}$ MH algorithm. The proposal density is

$$
\begin{gather*}
\rho_{t}^{*} \sim \mathcal{N}(\phi, \Phi) \tag{24}\\
\text { where, } \Phi=\left(\sigma^{-2} \sum_{i=1}^{N}\left(W_{i t} \mathbf{Y}_{t}\right)^{\prime}\left(W_{i t} \mathbf{Y}_{t}\right)\right)^{-1} \tag{25}\\
\phi=\Phi \sigma^{-2} \sum_{i=1}^{N_{t}}\left(W_{i t} \mathbf{Y}_{t}\right)^{\prime}\left(Y_{i t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right) \tag{26}\\
\alpha=\frac{\left|\mathbf{A}\left(\rho_{t}^{*}\right)\right| \exp \left[-\frac{1}{2 \sigma^{2}}\left\{\mathbf{A}\left(\rho_{t}^{*}\right) \mathbf{Y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}^{*}\right) \mathbf{Y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right\}\right]}{\left|\mathbf{A}\left(\rho_{t}\right)\right| \exp \left[-\frac{1}{2 \sigma^{2}}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{Y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right\}^{\prime}\left\{\mathbf{A}\left(\rho_{t}\right) \mathbf{Y}_{t}-\mathbf{X}_{t} \boldsymbol{\beta}-\mathbf{D}_{t} \mathbf{c}_{t}-\mathbf{b}_{i}\right\}\right]} \tag{27}
\end{gather*}
$$

The determinant $\left|\mathbf{A}\left(\rho_{t}\right)\right|=\prod_{i=1}^{m}\left(1-\rho_{t} \lambda_{i}\right)$ where λ_{i} is an eigenvalue of \mathbf{W}_{t}. Then if $\alpha>1$ accept ρ_{t}^{*}; otherwise, reject the proposal and keep ρ_{t} as the updated value
(h) Repeat the process from (a) to (g) till convergence.

3 Stationarity Check

To assess stationarity concerns with the time-invariant ρ model, we re-estimated time-invariant ρ model without placing any restrictions on the parameter space of ρ. We started the chain for ρ at zero. Figure 1 shows the trace plots of draws of ρ in two such MCMC simulations without a burn-in stage.

The plot on the left-side is based on a spatial model using mutual GATT/WTO membership to construct the matrix of spatial weights. After approximately one hundred iterations, the chain went out of the stationarity space, and stayed in the area above 1 for most of the time. There is no sign that the chain would return in the stationarity space by increasing the number of iterations.

Figure 1: System-Specific/Time-Specific Effect of Regime

To further check this problem, we re-estimated the same model, but used a time-invariant matrix of spatial weights, where the weight for two countries consists of their geographical distance. The trace plot on the right-side hand shows that it is very unlikely that the process is stationary, either. While the chain for ρ moves above 1 slightly less quickly (though still pretty quickly), the chain is very rarely below 1 .

